REVENUAL ARADIMANA ACADEMY, LATUR
A Presenter Institute for Pre-Medical & Pre Engineering
Windowski and the Pre-Medical & Pre Engineering
Minimum Academic State (Section 10, 2000)
Prof. Chectan Sir
Forus: Polynomial long division, applying the Remainder Theorem and Factor Theorem.
Polynomial Basics (Definition, Degree, Coefficient, Evaluation)
1. Which of the following expressions is not a polynomial?
(A) 5x² - 02x + 4 (B)
$$\frac{e}{2}$$
 + 7 (C) 10 (D) x^{-2} + 3x + 1
Solutions
• A polynomial in x is an expression of the form $a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$, where the exponents
($a_n - 1, \ldots, 1$, 0) must be non-negative integers.
• Option (A), $5x^2 - \sqrt{2x} + 4$, has exponents 3, 1, 0, $\sqrt{2}$ is a coefficient, which is allowed. This is a polynomial.
• Option (A), $5x^2 - \sqrt{2x} + 4$, has exponents 2, 0. This is a polynomial.
• Option (D), $x^{-2} + 3x + 1$, has an exponent 2, which is negative.
Therefore, $x^2 + 3x^2 + 1$ is not a polynomial.
• Option (D), $x^2 + 3x^2 + 1$, is not a polynomial.
• Option (D) is exponents 5, 2, 0 of x . This is a polynomial.
• Option (D) is exponents 5, 2, 0 of x . This is a polynomial.
• Option (D) has exponents 5, 2, 0 of x . This is a polynomial.
• Option (D) has exponents 5, 2, 0 of x . This is a polynomial.
• Option (D) has exponents 5, 2, 0 of x . This is a polynomial.
• Option (D) has exponents 5, 2, 0 of x . This is a polynomial.
• Option (D) has exponents 5, 2, 0 of x . This is a polynomial.
• Define (D) has exponents 4, 3, 2, 1 for x . This is a polynomial.
• Define (D) has exponential for two variables as and b. All exponents are non-negative

4. What is the leading coefficient of the polynomial $P(x) = 8 - 2x + 5x^4 - x^3$? (A) 5 (B) -2 (C) 8 (D) -1Solution:

- First, write the polynomial in standard form (descending powers of x): $P(x) = 5x^4 x^3 2x + 8$.
- The term with the highest degree is $5x^4$.
- The leading coefficient is the coefficient of this term.

The leading coefficient is 5. The correct option is (A).

5. Evaluate the polynomial $P(y) = 2y^3 - y^2 + 5y - 3$ when y = -1. (A) -11 (B) -7 (C) -1 (D) 3 **Solution:**

- Substitute y = -1 into the polynomial expression: $P(-1) = 2(-1)^3 (-1)^2 + 5(-1) 3$
- Calculate the powers: $(-1)^3 = -1$, $(-1)^2 = 1$. P(-1) = 2(-1) (1) + 5(-1) 3
- Perform multiplication and addition/subtraction: P(-1) = -2 1 5 3 = -11.

The value of the polynomial is -11. The correct option is (A).

- 6. If p(x) = x + 4, then p(x) + p(-x) is equal to: (A) 0 (B) 2x (C) 4 (D) 8 Solution:
 - Given p(x) = x + 4.
 - Find p(-x) by substituting -x for x: p(-x) = (-x) + 4 = -x + 4.
 - Calculate the sum p(x) + p(-x): p(x) + p(-x) = (x+4) + (-x+4) = x+4-x+4 = (x-x) + (4+4) = 0+8 = 8.

The value of p(x) + p(-x) is 8. The correct option is (D).

Polynomial Long Division

7. Using long division, find the quotient when $x^3 + 5x^2 + 7x + 2$ is divided by x + 2. (A) $x^2 + 7x + 21$ (B) $x^2 + 3x + 1$ (C) $x^2 - 3x - 1$ (D) $x^2 + 5x + 7$ Solution: Perform polynomial long division:

$x^2 + 3x + 1$
$x+2)x^3+5x^2+7x+2$
$-(x^3+2x^2)$
$3x^2 + 7x$
$-(3x^2+6x)$
x+2
-(x+2)
0

The quotient is $x^2 + 3x + 1$. The correct option is (B).

8. What is the remainder when $2x^3 - 3x^2 + 4x - 5$ is divided by x - 1 using long division? (A) -2 (B) 0 (C) -5 (D) 2

Solution: We can use the Remainder Theorem or long division. Method 1: Remainder Theorem

- Let $P(x) = 2x^3 3x^2 + 4x 5$. The divisor is x 1.
- The remainder is P(1). (Remainder Theorem)
- $P(1) = 2(1)^3 3(1)^2 + 4(1) 5 = 2 3 + 4 5 = -2.$

Method 2: Long Division

$$\begin{array}{r}
 2x^2 - x + 3 \\
 x - 1)\overline{2x^3 - 3x^2 + 4x - 5} \\
 -(2x^3 - 2x^2) \\
 -x^2 + 4x \\
 -(-x^2 + 4x) \\
 3x - 5 \\
 -(3x - 3) \\
 \end{array}$$

The remainder is -2.

The correct option is (A).

9. Divide $6x^4 + 5x^3 - 3x^2 + 5x - 1$ by $2x^2 - x + 1$. What is the quotient? (A) $3x^2 - 4x - 1$ (B) $3x^2 + 4x - 1$ (C) $3x^2 - 4x + 1$ (D) $3x^2 + 4x + 1$ **Solution:** Perform polynomial long division:

$$\begin{array}{r} 3x^2 + 4x - 1\\ 2x^2 - x + 1\overline{)6x^4 + 5x^3 - 3x^2 + 5x - 1}\\ -(6x^4 - 3x^3 + 3x^2)\\ \hline 8x^3 - 6x^2 + 5x\\ -(8x^3 - 4x^2 + 4x)\\ \hline -2x^2 + x - 1\\ -(-2x^2 + x - 1)\\ \hline 0\end{array}$$

The quotient is $3x^2 + 4x - 1$. The correct option is (B).

10. When dividing $x^4 - 2x^2 + 5x - 3$ by x + 3, what is the remainder obtained via long division? (A) -3 (B) 51 (C) 45 (D) 57

 ${\bf Solution:} \ {\rm Using \ the \ Remainder \ Theorem:}$

- Let $P(x) = x^4 2x^2 + 5x 3$. The divisor is x + 3 = x (-3).
- The remainder is P(-3). (Remainder Theorem)
- $P(-3) = (-3)^4 2(-3)^2 + 5(-3) 3$
- P(-3) = 81 2(9) 15 3 = 81 18 15 3 = 45.

The remainder is 45. The correct option is (C).

11. Find the quotient and remainder when $4x^3 - 8x^2 + 3x + 9$ is divided by 2x + 1. (A) Quotient $2x^2 - 5x + 4$, Remainder 5 (B) Quotient $2x^2 + 5x - 4$, Remainder -5 (C) Quotient $2x^2 + 5x + 4$, Remainder 5 (D) Quotient $2x^2 - 5x - 4$, Remainder 13 Solution: Perform polynomial long division:

The quotient is $2x^2 - 5x + 4$ and the remainder is 5. The correct option is (A).

12. Divide $x^5 + x^3 - 2x$ by $x^2 + 1$. What is the quotient? (A) $x^3 - 2$ (B) $x^3 + 1$ (C) x^3 (D) $x^3 + 2x$ Solution: Perform polynomial long division (include 0 coefficients for missing terms):

$$\begin{array}{r} x^{3} \\
 x^{2} + 0x + 1 \overline{\smash{\big)} x^{5} + 0x^{4} + x^{3} + 0x^{2} - 2x + 0} \\
 -(x^{5} + 0x^{4} + x^{3}) \\
 0 + 0 - 2x + 0
 \end{array}$$

The quotient is x^3 and the remainder is -2x. The question asks for the quotient. The correct option is (C).

13. Using long division for $(3x^3 - 7x^2 + 10x - 8) \div (x - 1)$, the remainder is: (A) 0 (B) -2 (C) 2 (D) -8 **Solution:** Using the Remainder Theorem:

- Let $P(x) = 3x^3 7x^2 + 10x 8$. The divisor is x 1.
- The remainder is P(1). (Remainder Theorem)
- $P(1) = 3(1)^3 7(1)^2 + 10(1) 8 = 3 7 + 10 8 = -2.$

The remainder is -2. The correct option is (B).

- 14. Find the quotient when $x^3 8$ is divided by x 2. (A) $x^2 + 2x + 4$ (B) $x^2 - 2x + 4$ (C) $x^2 + 4$ (D) $x^2 - 4$ Solution: Method 1: Using formula for difference of cubes
 - $x^3 8 = x^3 2^3$.
 - Using the identity $a^3 b^3 = (a b)(a^2 + ab + b^2)$.
 - $x^3 2^3 = (x 2)(x^2 + x(2) + 2^2) = (x 2)(x^2 + 2x + 4).$
 - When $(x-2)(x^2+2x+4)$ is divided by (x-2), the quotient is (x^2+2x+4) .

Method 2: Long Division

$x^2 + 2x + 4$
$(x-2)x^3+0x^2+0x-8$
$-(x^3 - 2x^2)$
$2x^2 + 0x$
$-(2x^2-4x)$
4x-8
-(4x-8)
0

The quotient is $x^2 + 2x + 4$. The correct option is (A).

Remainder Theorem & Applications

- **15.** The polynomial $4x^2 kx + 7$ leaves a remainder of -2 when divided by x 3. Find the value of k. (A) k = -15 (B) k = 15 (C) k = 43/3 (D) k = 45Solution:
 - Let $P(x) = 4x^2 kx + 7$.
 - By the Remainder Theorem, the remainder when P(x) is divided by x 3 is P(3).
 - We are given that the remainder is -2. So, P(3) = -2.
 - $P(3) = 4(3)^2 k(3) + 7 = 4(9) 3k + 7 = 36 3k + 7 = 43 3k$.
 - Set the calculated remainder equal to the given remainder: 43 3k = -2.
 - Solve for $k: -3k = -2 43 \implies -3k = -45 \implies k = 15$.

The value of k is 15. The correct option is (B).

16. If P₁(x) = 2x³ + kx² + 4x - 12 and P₂(x) = x³ + x² - 2x + k leave the same remainder when divided by (x - 3), find the value of k.
(A) k = 3 (B) k = -3 (C) k = 27 (D) k = -27 Solution:

- By the Remainder Theorem, the remainder when $P_1(x)$ is divided by x 3 is $R_1 = P_1(3)$.
- The remainder when $P_2(x)$ is divided by x 3 is $R_2 = P_2(3)$.
- We are given $R_1 = R_2$, so $P_1(3) = P_2(3)$.
- Calculate $P_1(3)$: $P_1(3) = 2(3)^3 + k(3)^2 + 4(3) 12 = 2(27) + 9k + 12 12 = 54 + 9k$.
- Calculate $P_2(3)$: $P_2(3) = (3)^3 + (3)^2 2(3) + k = 27 + 9 6 + k = 30 + k$.
- Set $P_1(3) = P_2(3)$: 54 + 9k = 30 + k.
- Solve for $k: 9k k = 30 54 \implies 8k = -24 \implies k = -3$.

The value of k is -3.

The correct option is (B).

- 17. Find the value of k if p(x) = (3x 2)(x k) 8 is divided by (x 2) leaving the remainder 4. (A) k = 1 (B) k = -1 (C) k = 2 (D) k = -2Solution:
 - By the Remainder Theorem, the remainder when p(x) is divided by x 2 is p(2).
 - We are given that the remainder is 4. So, p(2) = 4.
 - Calculate p(2): p(2) = (3(2) 2)(2 k) 8 = (6 2)(2 k) 8 = 4(2 k) 8.
 - Set p(2) = 4: 4(2-k) 8 = 4.

MATHEMATICS

• Solve for $k: 8 - 4k - 8 = 4 \implies -4k = 4 \implies k = -1$.

The value of k is -1. The correct option is (B).

18. Let R_1 and R_2 be the remainders when $P_1(x) = x^3 + 2x^2 - 5ax - 7$ and $P_2(x) = x^3 + ax^2 - 12x + 6$ are divided by x + 1 and x - 2 respectively. If $2R_1 + R_2 = 6$, find the value of a. (A) a = -2 (B) a = 1 (C) a = 6/7 (D) a = 2Solution:

- Find R_1 using the Remainder Theorem with $P_1(x)$ and divisor x + 1 = x (-1): $R_1 = P_1(-1) = (-1)^3 + 2(-1)^2 5a(-1) 7 = -1 + 2(1) + 5a 7 = 1 + 5a 7 = 5a 6$.
- Find R_2 using the Remainder Theorem with $P_2(x)$ and divisor x 2: $R_2 = P_2(2) = (2)^3 + a(2)^2 12(2) + 6 = 8 + 4a 24 + 6 = 4a 10$.
- Use the given condition $2R_1 + R_2 = 6$: 2(5a 6) + (4a 10) = 6.

• Solve for $a: 10a - 12 + 4a - 10 = 6 \implies 14a - 22 = 6 \implies 14a = 28 \implies a = 2.$

The value of a is 2. The correct option is (D).

19. If the polynomials $P_1(x) = ax^3 + 4x^2 + 3x - 4$ and $P_2(x) = x^3 - 4x + a$ leave the same remainder when divided by (x-3), find the value of a.

(A) a = 1 (B) a = -1 (C) a = 2 (D) a = -2Solution:

- By the Remainder Theorem, the remainders are $P_1(3)$ and $P_2(3)$.
- We are given $P_1(3) = P_2(3)$.
- Calculate $P_1(3)$: $P_1(3) = a(3)^3 + 4(3)^2 + 3(3) 4 = 27a + 4(9) + 9 4 = 27a + 36 + 9 4 = 27a + 41$.
- Calculate $P_2(3)$: $P_2(3) = (3)^3 4(3) + a = 27 12 + a = 15 + a$.
- Set $P_1(3) = P_2(3)$: 27a + 41 = 15 + a.
- Solve for $a: 27a a = 15 41 \implies 26a = -26 \implies a = -1$.

The value of a is -1. The correct option is (B).

20. Find the value of k if the remainder is -3 when $kx^3 + 8x^2 - 4x + 10$ is divided by x + 1. (A) k = -25 (B) k = 25 (C) k = 21 (D) k = -21Solution:

- Let $P(x) = kx^3 + 8x^2 4x + 10$. The divisor is x + 1 = x (-1).
- By the Remainder Theorem, the remainder is P(-1).
- We are given the remainder is -3. So, P(-1) = -3.
- Calculate P(-1): $P(-1) = k(-1)^3 + 8(-1)^2 4(-1) + 10 = k(-1) + 8(1) + 4 + 10 = -k + 22$.
- Set P(-1) = -3: -k + 22 = -3.
- Solve for $k: -k = -3 22 \implies -k = -25 \implies k = 25$.

The value of k is 25. The correct option is (B).

21. What number should be added to x² + 5 so that the resulting polynomial leaves the remainder 3 when divided by x + 3?
(A) 11 (B) -11 (C) 14 (D) -14

Solution:

- Let the number added be C. The resulting polynomial is $P(x) = x^2 + 5 + C$.
- The divisor is x + 3 = x (-3).
- By the Remainder Theorem, the remainder is P(-3).
- We are given the remainder is 3. So, P(-3) = 3.
- Calculate P(-3): $P(-3) = (-3)^2 + 5 + C = 9 + 5 + C = 14 + C$.
- Set P(-3) = 3: 14 + C = 3.
- Solve for C: C = 3 14 = -11.

The number to be added is -11. The correct option is (B).

- **22.** What is the remainder when $x^{2018} + 2018$ is divided by (x 1)? (A) 2017 (B) 2018 (C) 1 (D) 2019 **Solution:**
 - Let $P(x) = x^{2018} + 2018$. The divisor is x 1.
 - By the Remainder Theorem, the remainder is P(1).
 - Calculate P(1): $P(1) = (1)^{2018} + 2018 = 1 + 2018 = 2019$.

The remainder is 2019. The correct option is (D).

23. A polynomial p(x) when divided by (x - 1), (x + 1) and (x + 2) gives remainder 5, 7 and 2 respectively. If p(x) is divided by (x² - 1), the remainder is R(x). Find R(50).
(A) 34 (B) -44 (C) 44 (D) 104
Solution:

- From the given information and the Remainder Theorem: p(1) = 5, p(-1) = 7, p(-2) = 2.
- When p(x) is divided by $x^2 1 = (x 1)(x + 1)$ (a quadratic), the remainder R(x) must be linear, i.e., R(x) = ax + b.
- We can write $p(x) = Q(x)(x^2 1) + (ax + b)$ for some quotient polynomial Q(x).
- Use p(1) = 5: $p(1) = Q(1)(1^2 1) + a(1) + b = Q(1)(0) + a + b = a + b$. So, a + b = 5.
- Use p(-1) = 7: $p(-1) = Q(-1)((-1)^2 1) + a(-1) + b = Q(-1)(0) a + b = -a + b$. So, -a + b = 7.
- Solve the system:

a+b=5-a+b=7

Adding the two equations: $(a+b) + (-a+b) = 5+7 \implies 2b = 12 \implies b = 6$. Substitute b = 6 into a+b = 5: $a+6=5 \implies a=-1$.

- The remainder is R(x) = -1x + 6 = -x + 6.
- Find R(50): R(50) = -(50) + 6 = -44.

The value of R(50) is -44. The correct option is (B).

24. Using the same p(x) as in the previous question, if p(x) is divided by (x - 1)(x + 2), the remainder is r(x). Find r(100).

(A) 34 (B) 44 (C) 54 (D) 104 **Solution:**

- We have p(1) = 5 and p(-2) = 2.
- When p(x) is divided by (x-1)(x+2) (a quadratic), the remainder r(x) must be linear, i.e., r(x) = cx + d.
- We can write p(x) = S(x)(x-1)(x+2) + (cx+d) for some quotient polynomial S(x).
- Use p(1) = 5: p(1) = S(1)(1-1)(1+2) + c(1) + d = S(1)(0)(3) + c + d = c + d. So, c + d = 5.
- Use p(-2) = 2: p(-2) = S(-2)(-2-1)(-2+2) + c(-2) + d = S(-2)(-3)(0) 2c + d = -2c + d. So, -2c + d = 2.
- Solve the system:

$$c + d = 5$$
$$-2c + d = 2$$

Subtracting the second equation from the first: $(c+d) - (-2c+d) = 5 - 2 \implies c+d+2c-d=3 \implies 3c = 3 \implies c = 1$. Substitute c = 1 into c+d = 5: $1+d=5 \implies d=4$.

- The remainder is r(x) = 1x + 4 = x + 4.
- Find r(100): r(100) = 100 + 4 = 104.

The value of r(100) is 104. The correct option is (D).

25. When a polynomial f(x) is divided by (x - 1) the remainder is 5 and when it is divided by (x - 2), the remainder is 7. Find the remainder when it is divided by (x - 1)(x - 2).
(A) 2x - 3 (B) 2x + 3 (C) 3x + 2 (D) 3x - 2
Solution:

SRI VIDYA ARADHANA ACADEMY, LATUR

- Given f(1) = 5 and f(2) = 7. (Remainder Theorem)
- When f(x) is divided by (x-1)(x-2) (a quadratic), the remainder is linear, say ax + b.
- f(x) = Q(x)(x-1)(x-2) + ax + b.
- Use f(1) = 5: f(1) = Q(1)(0)(-1) + a(1) + b = a + b. So, a + b = 5.
- Use f(2) = 7: f(2) = Q(2)(1)(0) + a(2) + b = 2a + b. So, 2a + b = 7.
- Solve the system:

$$a+b=5$$
$$2a+b=7$$

Subtracting the first equation from the second: $(2a + b) - (a + b) = 7 - 5 \implies a = 2$. Substitute a = 2 into a + b = 5: $2 + b = 5 \implies b = 3$.

• The remainder is ax + b = 2x + 3.

The remainder is 2x + 3. The correct option is (B).

26. Find remainder when $f(x) = x^5 - x^3 + 3x^2 + 3x + 1$ is divided by $(x^2 - 1)$. (A) 3x - 4 (B) 3x + 4 (C) 4x + 3 (D) 4x - 3Solution:

- The divisor is $x^2 1 = (x 1)(x + 1)$. The remainder is linear, say ax + b.
- $f(x) = Q(x)(x^2 1) + ax + b$.
- Find f(1) and f(-1): $f(1) = (1)^5 (1)^3 + 3(1)^2 + 3(1) + 1 = 1 1 + 3 + 3 + 1 = 7$. $f(-1) = (-1)^5 (-1)^3 + 3(-1)^2 + 3(-1) + 1 = -1 (-1) + 3(1) 3 + 1 = -1 + 1 + 3 3 + 1 = 1$.
- Using the Remainder Theorem property for factors: f(1) = a(1) + b = a + b = 7. f(-1) = a(-1) + b = -a + b = 1.
- Solve the system:

$$a+b=7$$
$$-a+b=1$$

Adding the two equations: $2b = 8 \implies b = 4$. Substitute b = 4 into a + b = 7: $a + 4 = 7 \implies a = 3$. • The remainder is ax + b = 3x + 4.

The remainder is 3x + 4. The correct option is (B).

27. A polynomial f(x) when divided by $x^2 - 3x + 2$ leaves the remainder ax + b. If f(1) = 4 and f(2) = 7, determine a and b.

(A) a = 3, b = -1 (B) a = -3, b = 1 (C) a = -3, b = -1 (D) a = 3, b = 1Solution:

- The divisor is $x^2 3x + 2 = (x 1)(x 2)$.
- We are given that $f(x) = Q(x)(x^2 3x + 2) + (ax + b)$.
- Substituting x = 1: $f(1) = Q(1)(1^2 3(1) + 2) + a(1) + b = Q(1)(0) + a + b = a + b$.
- We are given f(1) = 4, so a + b = 4.
- Substituting x = 2: $f(2) = Q(2)(2^2 3(2) + 2) + a(2) + b = Q(2)(0) + 2a + b = 2a + b$.
- We are given f(2) = 7, so 2a + b = 7.
- Solve the system:

a+b=42a+b=7

Subtracting the first equation from the second: $(2a + b) - (a + b) = 7 - 4 \implies a = 3$. Substitute a = 3 into a + b = 4: $3 + b = 4 \implies b = 1$.

• Thus, a = 3 and b = 1.

The values are a = 3, b = 1. The correct option is (D).

Factor Theorem & Finding Zeros

SRI VIDYA ARADHANA ACADEMY, LATUR

28. Find the value of m, if x = 1/2 is one of the zeroes of the polynomial $p(x) = 4x^4 - 4x^3 - mx^2 + 12x - 3$. (A) m = -11 (B) m = 5 (C) m = 11 (D) m = -5Solution:

- If x = 1/2 is a zero, then p(1/2) = 0. (Factor Theorem/Definition of Zero)
- Substitute x = 1/2 into p(x): $p(1/2) = 4(1/2)^4 4(1/2)^3 m(1/2)^2 + 12(1/2) 3 = 0.$
- Calculate the powers and simplify: 4(1/16) 4(1/8) m(1/4) + 6 3 = 0 1/4 1/2 m/4 + 3 = 0.
- Multiply the entire equation by 4 to clear fractions: 4(1/4) 4(1/2) 4(m/4) + 4(3) = 4(0) 1 2 m + 12 = 0.
- Solve for m: $11 m = 0 \implies m = 11$.

The value of m is 11. The correct option is (C).

29. Obtain all zeros of $f(x) = 2x^4 + x^3 - 14x^2 - 19x - 6$, if two of its zeros are -2 and -1. The other two zeros are: (A) 3, 1/2 (B) -3, 1/2 (C) 3, -1/2 (D) -3, -1/2 **Solution:**

- Since -2 and -1 are zeros, (x (-2)) = (x + 2) and (x (-1)) = (x + 1) are factors. (Factor Theorem)
- Their product $(x + 2)(x + 1) = x^2 + x + 2x + 2 = x^2 + 3x + 2$ must also be a factor of f(x).
- Divide f(x) by $(x^2 + 3x + 2)$ using polynomial long division to find the other factor:

$2x^2 - 5x - 3$
$x^2 + 3x + 2\overline{)2x^4 + x^3 - 14x^2 - 19x - 6}$
$-(2x^4+6x^3+4x^2)$
$-5x^3 - 18x^2 - 19x$
$-(-5x^3 - 15x^2 - 10x)$
$-3x^2 - 9x - 6$
$-(-3x^2-9x-6)$
0

- The other factor is the quotient $2x^2 5x 3$.
- Find the zeros of this quadratic factor by setting it to zero: $2x^2 5x 3 = 0$.
- Factor the quadratic: (2x+1)(x-3) = 0.
- The zeros are $2x + 1 = 0 \implies x = -1/2$ and $x 3 = 0 \implies x = 3$.

The other two zeros are 3 and -1/2. The correct option is (C).

- **30.** Obtain all zeros of $f(x) = x^3 + 13x^2 + 32x + 20$, if one of its zeros is -2. The other two zeros are: (A) 1, 10 (B) -1, 10 (C) 1, -10 (D) -1, -10 Solution:
 - Since -2 is a zero, (x + 2) is a factor. (Factor Theorem)
 - Divide f(x) by (x+2) using synthetic division or long division. Synthetic Division:

- The quotient is $x^2 + 11x + 10$.
- Find the zeros of the quotient by setting it to zero: $x^2 + 11x + 10 = 0$.
- Factor the quadratic: (x+1)(x+10) = 0.
- The zeros are $x + 1 = 0 \implies x = -1$ and $x + 10 = 0 \implies x = -10$.

The other two zeros are -1 and -10. The correct option is (D).

- **31.** Obtain all zeros of $f(x) = x^4 3x^3 x^2 + 9x 6$ if two of its zeros are $-\sqrt{3}$ and $\sqrt{3}$. The other two zeros are: (A) -1, -2 (B) 1, 2 (C) -1, 2 (D) 1, -2Solution:
 - Since $-\sqrt{3}$ and $\sqrt{3}$ are zeros, $(x + \sqrt{3})$ and $(x \sqrt{3})$ are factors. (Factor Theorem)
 - Their product $(x + \sqrt{3})(x \sqrt{3}) = x^2 (\sqrt{3})^2 = x^2 3$ must also be a factor.

• Divide f(x) by $(x^2 - 3)$ to find the other factor:

$$\begin{array}{r} x^2 - 3x + 2 \\ x^2 + 0x - 3\overline{)x^4 - 3x^3 - x^2 + 9x - 6} \\ -(x^4 + 0x^3 - 3x^2) \\ \hline -3x^3 + 2x^2 + 9x \\ \hline -(-3x^3 + 0x^2 + 9x) \\ \hline 2x^2 + 0x - 6 \\ -(2x^2 + 0x - 6) \\ \hline 0 \end{array}$$

- The other factor is the quotient $x^2 3x + 2$.
- Find the zeros of this quadratic factor: $x^2 3x + 2 = 0$.
- Factor the quadratic: (x-1)(x-2) = 0.
- The zeros are $x 1 = 0 \implies x = 1$ and $x 2 = 0 \implies x = 2$.

The other two zeros are 1 and 2. The correct option is (B).

32. Find all the zeroes of the polynomial $f(x) = x^4 + x^3 - 34x^2 - 4x + 120$, if two of its zeroes are 2 and -2. The other two zeros are:

(A) 6,5 (B) -6,5 (C) 6,-5 (D) -6,-5Solution:

- Since 2 and -2 are zeros, (x 2) and (x + 2) are factors. (Factor Theorem)
- Their product $(x-2)(x+2) = x^2 4$ must also be a factor.
- Divide f(x) by $(x^2 4)$ to find the other factor:

$$\begin{array}{r} x^2 + x - 30 \\ x^2 + 0x - 4 \overline{\smash{\big)} x^4 + x^3 - 34x^2 - 4x + 120} \\ -(x^4 + 0x^3 - 4x^2) \\ \hline x^3 - 30x^2 - 4x \\ -(x^3 + 0x^2 - 4x) \\ \hline -30x^2 + 0x + 120 \\ -(-30x^2 + 0x + 120) \\ \hline 0 \end{array}$$

- The other factor is the quotient $x^2 + x 30$.
- Find the zeros of this quadratic factor: $x^2 + x 30 = 0$.
- Factor the quadratic: (x+6)(x-5) = 0.
- The zeros are $x + 6 = 0 \implies x = -6$ and $x 5 = 0 \implies x = 5$.

The other two zeros are -6 and 5. The correct option is (B).

33. Find the values of l and m if $P(x) = 8x^3 + lx^2 - 27x + m$ is divisible by $D(x) = 2x^2 - x - 6$. (A) l = 1, m = 18 (B) l = 1, m = -18 (C) l = -1, m = 18 (D) l = 2, m = -18Solution:

- If P(x) is divisible by D(x), then the zeros of D(x) are also zeros of P(x). (Factor Theorem extension)
- Find the zeros of the divisor $D(x) = 2x^2 x 6 = 0$. Factor the quadratic: $2x^2 4x + 3x 6 = 2x(x 2) + 3(x 2) = (2x + 3)(x 2) = 0$. The zeros are x = 2 and x = -3/2.
- Since these are zeros of P(x), we must have P(2) = 0 and P(-3/2) = 0.
- $P(2) = 8(2)^3 + l(2)^2 27(2) + m = 8(8) + l(4) 54 + m = 64 + 4l 54 + m = 4l + m + 10 = 0.$ (Eq 1)
- $P(-3/2) = 8(-3/2)^3 + l(-3/2)^2 27(-3/2) + m = 8(-27/8) + l(9/4) + 81/2 + m = -27 + 9l/4 + 81/2 + m = 0$. Multiply by 4: $4(-27) + 4(9l/4) + 4(81/2) + 4m = 0 \implies -108 + 9l + 162 + 4m = 9l + 4m + 54 = 0$. (Eq 2)
- Solve the system of equations: 1) $4l + m = -10 \implies m = -10 4l \ 2) \ 9l + 4m = -54$ Substitute *m* from (1) into (2): 9l + 4(-10 4l) = -54. $9l 40 16l = -54 \implies -7l = -54 + 40 \implies -7l = -14 \implies l = 2$.
- Substitute l = 2 back into m = -10 4l: m = -10 4(2) = -10 8 = -18.

The values are l = 2 and m = -18.

The correct option is (D).

SRI VIDYA ARADHANA ACADEMY, LATUR

- **34.** Find l and m if $P(x) = 2x^3 (2l+1)x^2 + (l+m)x + m$ may be exactly divisible by $D(x) = 2x^2 x 3$. (A) l = 1, m = 3 (B) l = 1, m = -3 (C) l = -1, m = 3 (D) l = -1, m = -3Solution:
 - Find the zeros of the divisor $D(x) = 2x^2 x 3 = 0$. Factor the quadratic: $2x^2 3x + 2x 3 = x(2x 3) + 1(2x 3) = (x + 1)(2x 3) = 0$. The zeros are x = -1 and x = 3/2.
 - Since P(x) is divisible by D(x), we must have P(-1) = 0 and P(3/2) = 0. (Factor Theorem extension)
 - $P(-1) = 2(-1)^3 (2l+1)(-1)^2 + (l+m)(-1) + m = 0$. 2(-1) (2l+1)(1) (l+m) + m = 0. -2 2l 1 l m + m = 0. $-3l 3 = 0 \implies -3l = 3 \implies l = -1$.
 - $P(3/2) = 2(3/2)^3 (2l+1)(3/2)^2 + (l+m)(3/2) + m = 0$. Substitute l = -1: 2(27/8) (2(-1)+1)(9/4) + (-1+m)(3/2) + m = 0. 54/8 (-2+1)(9/4) + (-3/2 + 3m/2) + m = 0. 27/4 (-1)(9/4) 3/2 + 3m/2 + 2m/2 = 0. 27/4 + 9/4 3/2 + 5m/2 = 0. $36/4 3/2 + 5m/2 = 0 \implies 9 3/2 + 5m/2 = 0$. Multiply by 2: $18 3 + 5m = 0 \implies 15 + 5m = 0 \implies 5m = -15 \implies m = -3$.

The values are l = -1 and m = -3. The correct option is (D).

35. Obtain all zeros of $f(x) = x^4 + x^3 - 34x^2 - 4x + 120$, if two of its zeros are 2 and -2. The other two zeros are: (A) 6,5 (B) -6,5 (C) 6, -5 (D) -6, -5

Solution: This question is identical to Question 32.

- Since 2 and -2 are zeros, (x-2) and (x+2) are factors. Their product (x^2-4) is a factor.
- Divide f(x) by $(x^2 4)$. From Q32, the quotient is $x^2 + x 30$.
- Find the zeros of the quotient: $x^2 + x 30 = 0$.
- Factor: (x+6)(x-5) = 0.
- The zeros are x = -6 and x = 5.

The other two zeros are -6 and 5. The correct option is (B).