

A Premier Institute for Pre-Medical & Pre Engineering			PHYSICS CHEMISTRY MATHEMATICS BIOLOGY NEET/JEE		
(Topic: Surds)					
Sub: Mathematics	Solutions	s to Assignment: 04	Prof. Chetan Sir		
1. Simplify $\sqrt[3]{54}$. (A) $2\sqrt[3]{3}$ Solution:	(B) $3\sqrt[3]{2}$	(C) $6\sqrt[3]{9}$	(D) $9\sqrt[3]{6}$		
We need to simplify $\sqrt[3]{54}$. First, find the prime factor So, $\sqrt[3]{54} = \sqrt[3]{3^3 \times 2}$. Using the property of sur $\sqrt[3]{3^3 \times 2} = \sqrt[3]{3^3} \times \sqrt[3]{2}$ $= 3 \times \sqrt[3]{2}$ $= 3 \sqrt[3]{2}$. The correct option is	prization of 54: $54 = 2 >$ ds: [Property: $\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$] (B).	$< 27 = 2 \times 3^3.$			
2. Simplify $\sqrt{32} + \sqrt{18} - \sqrt{32}$ (A) $\sqrt{0}$ Solution: Simplify each term: $\sqrt{32} = \sqrt{16 \times 2} = \sqrt{16} \times \sqrt{32} = \sqrt{9 \times 2} = \sqrt{9 \times \sqrt{32}} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{32} + \sqrt{18} - \sqrt{50} = 4\sqrt{2}$ Now substitute these into $\sqrt{32} + \sqrt{18} - \sqrt{50} = 4\sqrt{2}$ Combine the terms: $(4 + 3 - 5)\sqrt{2} = (7 - 5)\sqrt{2} = 2\sqrt{2}$. The correct option is a	$(B) 12\sqrt{2}$ $(\sqrt{2}) = 4\sqrt{2}.$ $(\sqrt{2}) = 3\sqrt{2}.$ $\sqrt{2} = 5\sqrt{2}.$ $(\sqrt{2}) = 5\sqrt{2}.$ $(\sqrt{2}) = 5\sqrt{2}.$ $(C).$	(C) 2√2 s]	(D) $6\sqrt{2}$		
3. Simplify $\sqrt{24} \times \sqrt{6}$. (A) $\sqrt{144}$ Solution: Using the property $\sqrt{a} \times \sqrt{24} \times \sqrt{6} = \sqrt{24 \times 6}$ $= \sqrt{144}$. The square root of 144 is So, $\sqrt{144} = 12$. The correct option is	(B) 12 $\sqrt{b} = \sqrt{ab}$: [Property: $\sqrt{a}\sqrt{b} = \sqrt{ab}$] 12. (B).	(C) $6\sqrt{4}$	(D) $12\sqrt{1}$		
4. Which is greater: $\sqrt{7}$ or $(A) \sqrt{7}$ Solution: To compare $\sqrt{7}$ and $\sqrt[3]{18}$. The least common multip $(\sqrt{7})^6 = (7^{1/2})^6 = 7^{6/2} =$ $(\sqrt[3]{18})^6 = (18^{1/3})^6 = 18^{6/7}$. Since 343 > 324, it follow Therefore, $\sqrt{7} > \sqrt[3]{18}$. The correct option is	$\sqrt[3]{18}?$ (B) $\sqrt[3]{18}$ (B) $\sqrt[3]{18}$ (C) we raise them to a con- ble (LCM) of the orders $7^3 = 343.$ $3^3 = 18^2 = 324.$ (A). (A).	(C) They are equal anmon power. of the surds (2 and 3) is 6.	(D) Cannot compare		

SRI VIDYA ARADHANA ACADEMY, LATUR

5. Arrange in according order:
$$\sqrt{3}$$
, $\sqrt[3]{7}$, $\sqrt[3]{0}$. (C) $\sqrt[3]{0} < \sqrt{3} < \sqrt[3]{7}$ (D) $\sqrt{3} < \sqrt[3]{7} < \sqrt[3]{7}$
Solution
To compare these works, convert them to the same order.
The LCM of the orders (2, 3, 6) is 6.
 $\sqrt[3]{7} = \sqrt{7}^{1/6} = \sqrt{7}^{1/6}$

FOUNDATION BATCH-2025

$$\frac{(\sqrt{2})^2 + (\sqrt{2})^2 + 2\sqrt{2} d_0}{2} = \frac{n + 1/\sqrt{2}}{2} = \frac{1}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{1}{2\sqrt{2}} + \frac{1}{2\sqrt{2}$$

14. Find
$$\sqrt{15 + 4\sqrt{14}}$$
 ((fint: $\sqrt{15 + 2\sqrt{16}}$)
(h) $\sqrt{15} + \sqrt{14}$ (c) $2\sqrt{2} + \sqrt{7}$ (b) $\sqrt{10} + \sqrt{5}$
Solution:
First, rewrite $4\sqrt{14}$ in the form $2\sqrt{k}$:
 $4\sqrt{14} = 2 \times 2\sqrt{14} = 2\sqrt{2^{14} + 2\sqrt{2^{14} + 2\sqrt{2^{15} + 14} - 2\sqrt{55}}}$.
So the copression becomes $\sqrt{15 + 2\sqrt{56}}$.
We need p and q such that $p + q = 15$ and $pq = 56$. These are 8 and 7.
So, $\sqrt{15 + 2\sqrt{51}}$ ($\sqrt{16 + \sqrt{7}}$) ($\sqrt{16 + \sqrt{7}}$)
The result is $2\sqrt{2} + \sqrt{7}$.
The correct option is (C).
15. Find $\sqrt{5 + \sqrt{21}}$. (Infint: Multiply by $\sqrt{2}/\sqrt{2}$ inside)
(A) $\sqrt{3/2 + \sqrt{7/2}}$ (D) $\sqrt{172 - \sqrt{3/2}}$ (C) $\sqrt{5} + \sqrt{21}$ (D) $\sqrt{\frac{5}{2} + \sqrt{21}}$
Solution:
To get the form $\sqrt{X + 2\sqrt{7}}$.
Consider $\sqrt{10 + 2\sqrt{21}}$ by med p and q such that $p + q = 10$ and $pq = 21$.
These are 7 and 3.
So, $\sqrt{10 + 2\sqrt{21}} = \sqrt{(\sqrt{7} + \sqrt{3})^2} = \sqrt{7} + \sqrt{3}$.
The correct option is (A).
16. Find the positive square root of $16 + 6\sqrt{7}$. (Iffint: $\sqrt{16 + 2\sqrt{63}}$)
(A) $\sqrt{4 + \sqrt{7}}$ (D) $\sqrt{3} + \sqrt{7}$
Solution:
We need to find $\sqrt{10 + 6\sqrt{7}}$.
Rewrite $6\sqrt{7}$ as 2 x $3\sqrt{7} = 2\sqrt{9^2 \times 7} = 2\sqrt{9 \times 7} = 2\sqrt{63}$.
So the copression is $\sqrt{16} = 2\sqrt{63}$.
We need to find $\sqrt{16 + 6\sqrt{7}}$.
The correct option is (C).
17. Find $\sqrt{17 - 12\sqrt{2}}$ (Iffint: $\sqrt{17 - 2\sqrt{22}}$
(A) $\sqrt{9} - \sqrt{8}$ (D) $3 - 2\sqrt{2}$ (C) $2\sqrt{2} - 3$ (D) $\sqrt{12} - \sqrt{5}$
Solution:
We need to find $\sqrt{17 - 12\sqrt{2}}$.
Rewrite $12\sqrt{29} \approx 2\sqrt{6/2 + 2\sqrt{6^2 \times 2}} = 2\sqrt{36} \times 2 = 2\sqrt{72}$.
So the correct option is (C).
17. Find $\sqrt{17 - 12\sqrt{2}}$.
We meed to find $\sqrt{17 - 12\sqrt{2}}$.
The correct option is (B).
18. Rationalize the denominator: $\frac{3}{\sqrt{3}}$.
(B) $\sqrt{3}$ (C) $3\sqrt{5}$ (D) $\frac{8\sqrt{5}}$.
Solution:
To rationalize the denominator: $\frac{3}{\sqrt{3}}$.
(B) $\sqrt{3}$ (C) $3\sqrt{5}$ (D) $\frac{8\sqrt{5}}$.
Solution:
To rationalize the denominator: $\frac{3}{\sqrt{3}}$.
(B) $\sqrt{3}$ (D) $\sqrt{3}$.
(D) $\sqrt{5}$.

The correct option is (D).
19. Rationalize the denominator:
$$\frac{1}{\sqrt{4+\sqrt{3}}}$$
. (C) $\sqrt{6} + \sqrt{5}$ (D) $\frac{\sqrt{30}}{11}$
Solution:
To rationalize $\sqrt{6} + \sqrt{5}$, unitiply by its conjugate $\sqrt{6} - \sqrt{5}$:
 $\frac{1}{\sqrt{4+\sqrt{3}}} - \frac{1}{\sqrt{4+\sqrt{3}}} + \frac{\sqrt{4-\sqrt{3}}}{\sqrt{4-\sqrt{3}}}$
 $\frac{1}{\sqrt{6-\sqrt{5}}} - \frac{1}{\sqrt{6+\sqrt{3}}} + \frac{\sqrt{6-\sqrt{3}}}{\sqrt{6-\sqrt{5}}}$
10. Solution:
10. Rationalize the denominator: $\frac{1}{\sqrt{5+\sqrt{3}}}$.
(A) $\sqrt{7} + \sqrt{3}$ (B) $4(\sqrt{7} + \sqrt{3})$ (C) $\sqrt{7} - \sqrt{3}$ (D) $\frac{4\sqrt{7} + \sqrt{3}}{10}$
10. Solution:
10. Rationalize the denominator: $\frac{1}{\sqrt{5+\sqrt{3}}}$.
(A) $\sqrt{7} + \sqrt{3}$ (B) $4(\sqrt{7} + \sqrt{3})$ (C) $\sqrt{7} - \sqrt{3}$ (D) $\frac{4\sqrt{7} + \sqrt{3}}{10}$
10. Rationalize $\sqrt{7} - \sqrt{3}$, multiply by its conjugate $\sqrt{7} + \sqrt{3}$:
 $\frac{1}{\sqrt{7} - \sqrt{3}} - \frac{\sqrt{3}}{\sqrt{7} - \sqrt{3}}$
 $\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} - \frac{\sqrt{7} + \sqrt{3}}{10}$
10. Solution:
10. Rationalize $\sqrt{7} - \sqrt{3}$, multiply by its conjugate $\sqrt{7} + \sqrt{3}$:
 $\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} - \frac{\sqrt{7} + \sqrt{3}}{10}$
 $\frac{\sqrt{7} + \sqrt{3}}{\sqrt{3}} - \frac{\sqrt{7} + \sqrt{3}}{10}$
 $\frac{\sqrt{7} + \sqrt{3}}{\sqrt{3}} - \frac{\sqrt{7} + \sqrt{3}}{10}$
 $\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} - \frac{\sqrt{7} + \sqrt{3}}{10}$
 $\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} - \frac{\sqrt{7} + \sqrt{3}}{10}$
 $\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} - \frac{\sqrt{7} + \sqrt{3}}{10}$
 $\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} - \frac{\sqrt{7} + \sqrt{3}}{10}$
 $\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} - \frac{\sqrt{7} + \sqrt{3}}{10}$
 $\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} - \frac{\sqrt{7} + \sqrt{3}}{10}$
 $\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} - \frac{\sqrt{7} + \sqrt{3}}{10}$
 $\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} - \frac{\sqrt{7} + \sqrt{3}}{10}$
 $\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} - \frac{\sqrt{7} + \sqrt{3}}{10}$
 $\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} - \frac{\sqrt{7} + \sqrt{3}}{10}$
 $\frac{\sqrt{7} + \sqrt{3}}{10} - \frac{\sqrt{7} + \sqrt{3}}{10} - \frac{\sqrt{7} + \sqrt{3}}{10}$
 $\frac{\sqrt{7} + \sqrt{3}}{10} - \frac{\sqrt{7} + \sqrt{3}}{10}$
 $\frac{\sqrt{7} + \sqrt{7} + \sqrt{7} + \sqrt{7}}{10} - \frac{\sqrt{7} +$

 $=\frac{2\sqrt{5}-\sqrt{50}+2\sqrt{2}-\sqrt{20}+2\sqrt{3}-\sqrt{30}}{2(4-10)}$ (where $\sqrt{50} = 5\sqrt{2}, \sqrt{20} = 2\sqrt{5}$) $=\frac{2\sqrt{5}-5\sqrt{2}+2\sqrt{2}-2\sqrt{5}+2\sqrt{3}-\sqrt{30}}{-12}$ $=\frac{-3\sqrt{2}+2\sqrt{3}-\sqrt{30}}{1}$ Multiply numerator and denominator by -1: $=\frac{3\sqrt{2}-2\sqrt{3}+\sqrt{30}}{12}.$ The correct option is (C). **24.** The rationalising factor of $\sqrt[3]{9} + \sqrt[3]{3} + 1$ is? (Hint: Relates to $a^3 - b^3$) (A) $\sqrt[3]{3} + 1$ (C) $\sqrt[3]{9} - 1$ (D) $\sqrt[3]{3} - 1$ (B) 2Solution: Let $x = \sqrt[3]{3}$. Then $x^2 = (\sqrt[3]{3})^2 = \sqrt[3]{9}$. The given expression is $\sqrt[3]{9} + \sqrt[3]{3} + 1 = x^2 + x \cdot 1 + 1^2$. This is in the form $a^2 + ab + b^2$ where $a = x = \sqrt[3]{3}$ and b = 1. We know the identity $(a - b)(a^2 + ab + b^2) = a^3 - b^3$. To rationalize the expression (i.e., make it an integer), we multiply by (a - b). So, the rationalising factor is $a - b = \sqrt[3]{3} - 1$. Multiplying the expression by this factor gives: $(\sqrt[3]{3}-1)(\sqrt[3]{9}+\sqrt[3]{3}+1) = (\sqrt[3]{3})^3 - 1^3 = 3 - 1 = 2$, which is rational. The correct option is (D). **25.** Simplify $\frac{\sqrt{72}-\sqrt{18}}{\sqrt{12}}$ (A) $\sqrt{6}/2$ (B) $\sqrt{3}/2$ (C) $3\sqrt{6}/2$ (D) $3\sqrt{2}/2$ Solution: Simplify the surds: $\sqrt{72} = \sqrt{36 \times 2} = 6\sqrt{2}.$ $\sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2}.$ $\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}.$ Substitute these into the expression: $\frac{6\sqrt{2}-3\sqrt{2}}{2\sqrt{3}} = \frac{(6-3)\sqrt{2}}{2\sqrt{3}} = \frac{3\sqrt{2}}{2\sqrt{3}}.$ Rationalize the denominator: $\frac{3\sqrt{2}}{2\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{3\sqrt{2\times3}}{2(\sqrt{3})^2} = \frac{3\sqrt{6}}{2\times3} = \frac{3\sqrt{6}}{6}.$ Simplify the fraction: $\frac{\sqrt{6}}{2}$. The correct option is (A). **26.** Simplify $\sqrt{4 + \sqrt{15}} + \sqrt{4 - \sqrt{15}}$. (Hint: Square the expression or find square roots individually) (A) $\sqrt{10}$ (B) $\sqrt{6}$ (C) $2\sqrt{5/2}$ (D) 8 Solution: Let $X = \sqrt{4} + \sqrt{15} + \sqrt{4} - \sqrt{15}$. Since $4 > \sqrt{15}$ (as 16 > 15), both terms are real and positive, so X > 0. Square the expression: $X^2 = (\sqrt{4 + \sqrt{15}} + \sqrt{4 - \sqrt{15}})^2$ $=(\sqrt{4}+\sqrt{15})^2+(\sqrt{4}-\sqrt{15})^2+2(\sqrt{4}+\sqrt{15})(\sqrt{4}-\sqrt{15})$ $= (4 + \sqrt{15}) + (4 - \sqrt{15}) + 2\sqrt{(4 + \sqrt{15})(4 - \sqrt{15})}$ $= 8 + 2\sqrt{4^2 - (\sqrt{15})^2} \qquad [\text{Using } (a-b)(a+b) = a^2 - b^2]$ $= 8 + 2\sqrt{16 - 15} = 8 + 2\sqrt{1} = 8 + 2(1) = 10.$ So, $X^2 = 10$. Since X > 0, $X = \sqrt{10}$. The correct option is (A). **27.** If $x = 3 + \sqrt{8}$, find the value of $x^2 + \frac{1}{x^2}$. (A) 34 (B) 30 (C) 36 (D) $6 + \sqrt{8}$ Solution: Given $x = 3 + \sqrt{8}$. Simplify $\sqrt{8} = 2\sqrt{2}$. So $x = 3 + 2\sqrt{2}$. Find $\frac{1}{x}$: $\frac{1}{x} = \frac{1}{3+2\sqrt{2}} = \frac{1}{3+2\sqrt{2}} \times \frac{3-2\sqrt{2}}{3-2\sqrt{2}} = \frac{3-2\sqrt{2}}{3^2-(2\sqrt{2})^2}$

	$= \frac{3-2\sqrt{2}}{9-8} = \frac{3-2\sqrt{2}}{1} = 3 - 2\sqrt{2}.$ Find $x + \frac{1}{x}$: $x + \frac{1}{2} = (3 + 2\sqrt{2}) + (3 - 2\sqrt{2})$	$\overline{2}) = 6.$		
	We need $x^2 + \frac{1}{x^2}$. We use the $x^2 + \frac{1}{x^2} = (6)^2 - 2 = 36 - 2 =$	identity $x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2$ = 34.	$^{2}-2.$	
	The correct option is (A) .			
28.	If $x = 2 + \sqrt{3}$, find the value of (A) $\frac{\sqrt{3}-1}{\sqrt{2}}$	of \sqrt{x} . (Hint: Find $\sqrt{2 + \sqrt{3}}$ (B) $\sqrt{2} + 1$	$\overline{\overline{3}}$) (C) $\frac{\sqrt{6}+\sqrt{2}}{2}$	(D) $\sqrt{3} + 1$
	Solution:			
	We need to find $\sqrt{x} = \sqrt{2 + y}$	$\sqrt{3}$.		
	To get the form $\sqrt{A} + 2\sqrt{B}$, $\frac{1}{\sqrt{2} + \sqrt{3}} = \sqrt{\frac{2(2+\sqrt{3})}{2}} = \sqrt{\frac{4+\sqrt{3}}{2}}$	multiply and divide by 2 ins $\frac{\sqrt{2\sqrt{3}}}{2} = \frac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}.$	ide the square root:	
	For the numerator $\sqrt{4+2\sqrt{3}}$ We need p and q such that p	+ q = 4 and $pq = 3$. These a	re 3 and 1.	
	So, $\sqrt{4 + 2\sqrt{3}} = \sqrt{(\sqrt{3} + \sqrt{1})}$	$)^2 = \sqrt{3} + \sqrt{1} = \sqrt{3} + 1.$		
	Therefore, $\sqrt{x} = \frac{\sqrt{3}+1}{\sqrt{2}}$.			
	Rationalize this: $\frac{\sqrt{3}+1}{\sqrt{2}} = \frac{(\sqrt{3}+1)}{\sqrt{2}}$	$\frac{(+1)\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{6}+\sqrt{2}}{2}.$		
	The correct option is (C).			
29.	If $x = 9 - 4\sqrt{5}$, find the value (A) 18	of $x + \frac{1}{x}$. (B) $-8\sqrt{5}$	(C) 81	(D) 10
	Solution:			
	Given $x = 9 - 4\sqrt{5}$. Find $\frac{1}{x}$:			
	$\frac{1}{x} = \frac{1}{9-4\sqrt{5}} = \frac{1}{9-4\sqrt{5}} \times \frac{9+4\sqrt{5}}{9+4\sqrt{5}}$ $= \frac{9+4\sqrt{5}}{9^2 - (4\sqrt{5})^2} = \frac{9+4\sqrt{5}}{81 - (16\times 5)} = \frac{9+4}{81}$ Now, find $x + \frac{1}{2}$:	$\frac{4\sqrt{5}}{-80} = 9 + 4\sqrt{5}.$		
	$x + \frac{1}{x} = (9 - 4\sqrt{5}) + (9 + 4\sqrt{5})$	(5) = 18.		
	The correct option is (A).			
30.	If $x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}$ and $y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}$, find $x + y$.		
	(A) 8	(B) 16	(C) $2\sqrt{15}$	(D) 2
	Solution:			
	Simplify x: $x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} \times \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{(\sqrt{5} + \sqrt{3})^2}{(\sqrt{5})^2 - \sqrt{5}}$ $5 + 3 + 2\sqrt{15}$ $8 + 2\sqrt{15}$	$\frac{\sqrt{3}}{(\sqrt{3})^2}$		
	$= \frac{3+3+2\sqrt{20}}{5-3} = \frac{3+2\sqrt{20}}{2} = 4 + \sqrt{20}$	/ 15. 1		
	Notice that $y = \frac{1}{x}$. So, $y = \frac{1}{44}$	$-\sqrt{15}$.		
	$y = \frac{1}{4+\sqrt{15}} \times \frac{1}{4-\sqrt{15}} = \frac{1}{16-15} = \frac{1}{16-15}$ Find $x + y$:	$= 4 - \sqrt{10}.$		
	$x + y = (4 + \sqrt{15}) + (4 - \sqrt{15})$	$\overline{b}) = 8.$		
	The correct option is (A).			
31.	Simplify the expression: $\frac{1}{2-\sqrt{3}}$	$\frac{1}{\sqrt{3}+\sqrt{2}} + \frac{4}{3-\sqrt{5}}.$		_
	(A) $3 + \sqrt{2} + \sqrt{7}$	(B) $5 + \sqrt{2} + \sqrt{5}$	(C) $\sqrt{2} + \sqrt{5}$	(D) $1 - \sqrt{5}$
	Solution:			
	Rationalize each term separat Term 1: $\frac{1}{2-\sqrt{3}} = \frac{1(2+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}$	ely:		
	Term 2: $\frac{1}{\sqrt{3}+\sqrt{2}} = \frac{1(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}+\sqrt{2})}$	$\frac{\overline{2}}{-\sqrt{2}} = \frac{\sqrt{3}-\sqrt{2}}{3-2} = \sqrt{3} - \sqrt{2}.$		
	Term 3: $\frac{4}{3-\sqrt{5}} = \frac{4(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})}$ Substitute back:	$= \frac{4(3+\sqrt{5})}{9-5} = \frac{4(3+\sqrt{5})}{4} = 3 +$	$\sqrt{5}.$	
	$(2+\sqrt{3}) - (\sqrt{3}-\sqrt{2}) + (3+$	$\sqrt{5}$)		

FOUNDATION BATCH-2025

$$= 2 + \sqrt{3} - \sqrt{3} + \sqrt{2} + \sqrt{3} + \sqrt{5}$$

$$= (2 + 3) + \sqrt{2} + \sqrt{5} + (\sqrt{3} - \sqrt{3}) = 5 + \sqrt{2} + \sqrt{5}.$$
The correct option is (B).
32. The expression $\left(\frac{\sqrt{4}{\sqrt{4}+2}}{\sqrt{4}+\sqrt{5}+(\sqrt{6}+\sqrt{4}+\sqrt{7})} + 2 - 2\sqrt{2}\right)$ is equal to:
(A) 0 (B) $2\sqrt{7}$ (C) $\sqrt{6}$ (D) $2\sqrt{7}$
Solution:
Rationalize each fraction:
Term 1: $\frac{\sqrt{4}+1}{\sqrt{4}+1} = \frac{\sqrt{2}(\sqrt{4}+2)}{(\sqrt{4}+\sqrt{4}+\sqrt{4}+1)} = \sqrt{6} - 2.$
Term 2: $\frac{\sqrt{4}+\sqrt{6}}{\sqrt{4}+\sqrt{6}} = \frac{\sqrt{4}+2}{\sqrt{4}+\sqrt{6}} = \sqrt{7} - \sqrt{6}.$
The accord by $\sqrt{7} - \sqrt{6}$ (C) $\sqrt{2} + \sqrt{7}$. Substitute into the expression:
($\sqrt{6} - \sqrt{7}, \sqrt{6}$ (F) $(\sqrt{2} + \sqrt{7}) + 2 - 2\sqrt{2}$
 $-\sqrt{6} - 2 + \sqrt{7} - \sqrt{6} + 2\sqrt{2} + \sqrt{7} + 2 - 2\sqrt{2}.$
Combine He terms:
($\sqrt{6} - \sqrt{6}$) $+ (-2 + 2) + (\sqrt{7} + \sqrt{7}) + (2\sqrt{2} - 2\sqrt{2})$
 $= 0 + 0 + 2\sqrt{7} + 0 = 2\sqrt{7}.$
The correct option is (D).
33. The value of $\frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{4}+\sqrt{2}} + \frac{1}{\sqrt{4}+\sqrt{5}} + \cdots + \frac{1}{\sqrt{100}+\sqrt{90}}$ is:
(A) 1 (B) 0 (C) $\sqrt{99}$ (D) $\sqrt{99} - 1$
Solution:
Consider a general term: $\frac{1}{\sqrt{4}+\sqrt{6}} + \frac{\sqrt{4}+\sqrt{4}}{\sqrt{4}+\sqrt{3}} + \cdots + (\sqrt{40} - \sqrt{99}),$
This is a tolescoping sum:
 $= -\sqrt{1} + \sqrt{2} - \sqrt{2} + (\sqrt{3} - \sqrt{3}) + \cdots + (\sqrt{40} - \sqrt{99}) + \sqrt{100}$
 $= -\sqrt{1} + \sqrt{100} - (-1 + 10) = 9.$
The correct option is (B).
34. Simplify $\frac{1}{\sqrt{100} - \sqrt{99}} - \frac{\sqrt{94} + \sqrt{94}}{\sqrt{94} + \sqrt{3}} + \frac{\sqrt{4}+\sqrt{4}}{\sqrt{4} + \sqrt{4}} + \frac{\sqrt{4}+\sqrt{4}$

SRI VIDYA ARADHANA ACADEMY, LATUR

 $x = 3^{1/2} \cdot 3^{1/4} \cdot 3^{1/8} \dots = 3^{(1/2 + 1/4 + 1/8 + \dots)}.$ The exponent is an infinite geometric series $S = \frac{a}{1-r}$ with a = 1/2, r = 1/2. $S = \frac{1/2}{1-1/2} = \frac{1/2}{1/2} = 1$ So, $x = 3^1 = 3$. [Sum of infinite GP: S = a/(1-r) for |r| < 1]. The correct option is (B). **36.** Find the value of $\sqrt{30 + \sqrt{30 + \sqrt{30 + \dots}}}$ (B) $3\sqrt{10}$ (A) 5(C) 6 (D) 7 Solution: Let $x = \sqrt{30 + \sqrt{30 + \sqrt{30 + \dots}}}$. Assume x > 0. Square both sides: $x^2 = 30 + \sqrt{30 + \sqrt{30 + \dots}}$ The expression under the first radical on the RHS is x. So, $x^2 = 30 + x$. Rearrange into a quadratic equation: $x^2 - x - 30 = 0$. Factor the quadratic: (x-6)(x+5) = 0. Possible solutions are x = 6 or x = -5. Since x > 0, we have x = 6. Alternatively, if k = n(n+1), then $\sqrt{k + \sqrt{k + \ldots}} = n + 1$. Here $30 = 5 \times 6$, so n = 5. The value is n + 1 = 5 + 1 = 6. The correct option is (C).

Answer	Key
--------	-----

1 (B) 2 (C)	3 (B) 4 (A) 5	(A) 6 (A) 7 (D) 8	8 (C) 9 (A) 10 (C)
11 (B) 12 (B)	13 (A) 14 (C) 15	(A) 16 (C) 17 (B) 18	8 (D) 19 (A) 20 (A)
21 (B) 22 (A)	23 (C) 24 (D) 25	(A) 26 (A) 27 (A) 28	8 (C) 29 (A) 30 (A)
31 (B) 32 (D)	33 (B) 34 (D) 35	(B) 36 (C)	