Basic Mathematics: Section 6

Inequality and Wavy Curve Method

mathbyiiserite

Types of Intervals

An interval is a subset of the real numbers \mathbb{R} . If $a,b\in\mathbb{R}$ and a< b

Representation	Inequality	On Number Line
$x \in (a, b)$	a < x < b	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$x \in [a, b]$	$a \le x \le b$	$a \rightarrow b$
$x \in (a, b]$	$a < x \le b$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$x \in [a, b)$	$a \le x < b$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$x \in (a, b)$ $x \in [a, b]$ $x \in (a, b]$	$x \in (a, b)$ $a < x < b$ $x \in [a, b]$ $a \le x \le b$ $x \in (a, b]$ $a < x \le b$

Infinite Intervals

Set Notation	Interval Notation	On Number Line
$\{x \in \mathbb{R} \mid x \ge a\}$	$[a,\infty)$	a
$\{x \in \mathbb{R} \mid x \le a\}$	$(-\infty,a]$	a
$\{x \in \mathbb{R} \mid x > a\}$	(a,∞)	a
$\{x \in \mathbb{R} \mid x < a\}$	$(-\infty,a)$	a

We always use an open bracket, for infinity (∞) and negative infinity $(-\infty)$.

Find the result of:

$$[1,5] \cup [3,8]$$

Question 2

$$(-\infty,0)\cup(2,\infty)$$

Ans:
$$(-\infty,0)U(2,\infty)$$

Find the result of:

$$(-2,6) \cap [0,9]$$

Question 4

$$(1,3)\cap(4,7)$$

$$\chi \in \phi$$

Find the result of:

$$[-4,4] \cup [-1,1]$$

Question 6

$$(-\infty, 10] \cap [-2, 5]$$

Find the result of:

$$(-\infty,3]\cup[3,\infty)$$

Question 8

$$[-5,2] \cap [2,7)$$

Find the result of:

$$(-5,0) \cup [2,6] \cup (8,10]$$

Question 10

$$[-4, 10] \cap (0, 8) \cap [-2, 6]$$

a7 b

Rule 1

If
$$a > b$$
, then $a \pm k > b \pm k$

Examples

- ► Given 7 > -2: 5 3 > -2 3 (True)
 - ► Adding 5: $7+5 > -2+5 \implies 12 > 3$ (True)
 - ► Subtracting 10: $7 10 > -2 10 \implies -3 > -12$ (True)
- ► Given -10 + 6 > -20 + 6:
 - ▶ We can subtract 6 from both sides to get -10 > -20 (True)

Rule 2

- ▶ If a > b and k > 0, then ka > kb
- ▶ If a > b and k < 0, then ka < kb

Examples

Given the inequality $(5 > 3)^{\vee}$

► Multiplying by a positive number (4):

$$(5 \times 4) > (3 \times 4) \implies 20 > 12$$
 (Sign remains)

Multiplying by a negative number (-4):

$$5 \times (-4) < 3 \times (-4) \implies -20 < -12$$
 (Sign reverses)

Rule 3

Never multiply both sides of an inequality by an expression whose sign is unknown.

Examples

- Multiply by $x: 8x > 3x \implies Cannot be determined as sign of <math>x$ is unknown.
- Multiply by $(x^2 + 1)$. Since $x^2 + 1$ is always positive, the sign is unchanged.

$$8(x^2+1) > 3(x^2+1)$$
 (True)

Multiply by (x+2): $8(x+2) > 3(x+2) \implies$ Cannot be determined as sign of (x+2) is unknown.

Rule 4: Cancelling a common factor

- ▶ If $A \cdot B > A \cdot C$ and A > 0, then B > C. (Sign is unchanged)
- ▶ If $A \cdot B > A \cdot C$ and A < 0, then B < C. (Sign is reversed)

Examples

- Figure 6. Given 2(x-3) > 2(2x-8):
 - Since 2 is positive, we can cancel it: x 3 > 2x 8
- Given $-3(x^2) > -3(6x^2)$:
 - Since -3 is negative, we cancel it and reverse the sign: $x^2 < 6x^2$

$$\chi^2 < G\chi^2$$

Rule 5: Reciprocal Property

- ightharpoonup Given 5 > 2:
 - ► Both sides are positive. Taking the reciprocal reverses the sign:

$$0.2 = \frac{1}{5} < \frac{1}{2} = 0.5$$

$$\frac{1}{5} < \frac{1}{2} \implies 0.2 < 0.5$$
 (True)

- ► Given -3 > -7:
 - ▶ Both sides are negative. Taking the reciprocal reverses the sign:

$$3 -3 > -7$$

$$3 = -1 < -1 = 0.14$$

$$-\frac{1}{3} < -\frac{1}{7}$$
 (True, since $-0.33 < -0.14$)

$$+$$
 $+$ $\chi = 3$

$$\frac{1}{x} = \frac{7}{5}$$

3) Sign of
$$(2x+5)$$

$$Y = -\frac{5}{2} = -2.5$$
Sign of $(5-x)$

Sign of
$$(5-x)$$

$$5-x=0$$

$$x=5$$

$$+$$

$$x=5$$

Sign of
$$(4-2\pi)$$

$$+ -$$

$$\pi = 2$$
(6) Sign of $(x-2)^{2}$

$$+ +$$

$$\chi = 2$$

(10) Sign of
$$(2-x)$$
 $+$
 $+$

(I) sign of
$$(2-1)^3$$

$$2-N=0$$
 $N=2$
 $+++$
 $N=3$

(13) Sign of
$$(4-2x)^{99}$$

$$+ - 4=2x$$

$$+ - 4=2x$$

$$x=2$$

$$x=2$$

(4) Sign of
$$(\chi-1)(\chi-2)$$
 $\chi=1$
 $\chi=1$
 $\chi=1$
 $\chi=2$
 $(\chi-1)(\chi-2) \ge 0 \Rightarrow \chi \in (-\infty, 1) \cup [2,\infty)$
 $(\chi-1)(\chi-2) < 0 \Rightarrow \chi \in (1,2)$
 $(\chi-1)(\chi-2) < 0 \Rightarrow \chi \in (1,2)$

Practice: Sign of Linear Expressions

1. Sign of
$$(x-3)$$

3. Sign of
$$(x + 8)$$

2. Sign of
$$(2x + 5)$$

4. Sign of
$$(13 - x)$$

Practice: Sign of Expressions with Powers

1. Sign of
$$(10 - 2x)$$

3. Sign of
$$(x + 1)^2$$

2. Sign of
$$(8-2x)^3$$

4. Sign of
$$(x-3)(5-x)$$

Practice: Sign of Combined Expressions

1. Sign of
$$(x-2)(x-5)$$

3. Sign of
$$(x-3)(x-6)(x-9)$$

2. Sign of
$$\frac{x-1}{x+4}$$

4. Sign of
$$(x-7)^2(x+2)$$

The Wavy Curve Method

- 1. Step 1: Shift all the terms to the LHS and make the RHS equal to zero.
- 2. **Step 2:** Factorize the expression into linear factors (ax + b) ("x ka coefficient positive banao")
- 3. **Step 3:** Find all the roots (critical points) and plot them on a number line in increasing order.
- Step 4: Identify roots that come from factors with an even exponent. Mark these roots on the number line with a cross sign (to remember that the sign will not change when crossing them.)
- 5. **Step 5:** Put a positive sign (+) to the right of the greatest root. Now, move from right to left. Change the sign as you cross each root, **except** for the marked roots with cross sign where the sign remains the same.

$$(5-x)(x+3)^2(2x-6) \ge 0$$

$$\frac{(x-3)(x+5)^2}{(x-2)(x+11)^3} > 0$$

$$\frac{(x+1)^2(2x-3)}{(7-x)^3} \ge 0$$

$$\frac{(x^2 - 5x + 6)(x^2 - 8x + 15)}{(x^2 - 16)} > 0$$

$$\frac{x^3 - 6x^2 + 11x - 6}{(x^2 + 2)(x^2 - 8x + 12)} \le 0$$

Find the intervals where $y \ge 0$ for the function:

$$y = \frac{(x^2 - 3)(x^4 + x^2 + 1)(2^x - 1)}{(3x + 1)^7(x + 5)^2} > 0$$

$$\left(\chi^{4} + \chi^{2} + 1\right) > 0$$

Find the number of positive integral values of x satisfying the inequality:

$$\frac{(x-4)^{2017}(x+8)^{2016}(x+1)}{x^{2016}(x-1)^3(x+3)^5(x-6)(x+9)^{2018}} \le 0$$

Find the number of positive integral values of x satisfying the inequality:

$$\frac{(5^x - 3^x)(x - 2)}{x^2 + 5x + 2} \ge 0$$

$$\frac{0.5}{x - x^2 - 1} < 0$$

Solve the inequality:

Bi-quadrust

$$x^4 - 5x^2 + 4 < 0$$

$$\frac{4x+3}{2x-5} \le 6$$

$$\frac{4x+3}{2x-5} - 6 \le 0$$

$$\frac{4x+3-12x+30}{2x-5} \le 0$$

$$\frac{-8x+33}{2x-5} \le 0$$

$$\frac{8x-33}{2n-5} > 0$$

$$+ \frac{33}{2}$$

$$\frac{33}{8}$$

$$7 \in (-5, \frac{5}{2}) \cup (\frac{33}{8}, 5)$$

$$\frac{x+1}{(x-1)^2} \le 1$$

$$\frac{\chi + 1}{(\chi - 1)^2} - 1 \leq 0$$

$$\frac{(\chi + 1) - (\chi^2 - 2\chi + 1)}{(\chi - 1)^2} \leq 0$$

$$\frac{(\chi - 1)^2}{(\chi - 1)^2} \leq 0$$

$$\frac{\chi^{2}-3\chi}{(\chi-1)^{2}} > 0$$

$$\frac{(\chi)(\chi-3)}{(\chi-1)^{2}} > 0$$

$$\frac{(\chi-3)}{(\chi-1)^{2}} > 0$$

$$(x^2+3x+1)(x^2+3x-3) \geq 5$$

$$|et (2+3n=t) + (1+1)(1-3) - 5 > 0$$

$$|et (2+3n=t) + (1+1)(1-3) - 5 > 0$$

$$|et (2+3n=t) + (1+2) = 0$$

$$|$$

Find x for the inequality:

$$Ans: \chi \in (-\infty, -15)$$

$$1<\frac{x-1}{x+2}<7$$

$$\frac{1}{(\chi+2)}<0$$

$$\chi \in (-\infty, -2)$$

$$\square < 7$$

$$|\langle \frac{\lambda+1}{\lambda-1}\rangle$$

$$\frac{\chi_{-1}}{\chi_{+2}} - 1 > 0$$

$$\frac{3}{-3}$$

$$\frac{\alpha-1}{\alpha+2} < 7$$

$$\frac{\chi-1}{\chi+2}-7<0$$

$$-\frac{15}{1-15}$$

Find the number of integral solutions of the inequality:

$$x^2 + 9 < (x + 3)^2 < 8x + 25$$

$$x^{2}+9 < (x+3)^{2} \text{ and } (x+3)^{2} < 8x+25$$

$$x^{2}+6x+9 - x^{2}-9>0 \qquad x^{2}-2x-16<0$$

$$0 \cap 0 \qquad x = 2 \pm \sqrt{4+64}$$

$$x \in (0, 1+\sqrt{17}) \qquad x \in (0, \infty)$$

$$= 2 + 2\sqrt{17}$$

$$= 1 + \sqrt{17}$$

Domain of a Function

Rules

1.
$$\log_{\triangle}(\square)$$
 $\square > 0$

$$\frac{N}{\Box}$$
 $\Delta > 0$ $\Delta \neq 1$

3.
$$\sqrt{\Box}$$

4.
$$\frac{N}{\sqrt{\Box}}$$

5.
$$\sin^{-1}(\square)$$
 or $\cos^{-1}(\square)$ \Longrightarrow $-1 \le \square \le 1$

6.
$$tan^{-1}(\Box)$$
 or $cot^{-1}(\Box) \implies \Box \in (-\infty, \infty)$

7.
$$\sec^{-1}(\square)$$
 or $\csc^{-1}(\square)$

$$\implies \square > 0$$

$$\Rightarrow \Box > 0 \& \triangle > 0 \& \triangle \neq 0$$

$$\implies \Box \neq 0$$

$$\Longrightarrow \square \geq 0$$

$$\implies \Box > 0$$

$$\implies -1 \le \square \le 1$$

$$\implies \sqcup \in (-\infty, \infty)$$

7.
$$\sec^{-1}(\Box) \text{ or } \csc^{-1}(\Box) \implies |\Box| \ge 1 \qquad \Box \mathcal{E}(\neg \neg \neg \cup) \cup (\Box \wp)$$

$$y = \sqrt{2x - x^2}$$

$$y = \sqrt{x - 1} + \sqrt{x + 1}$$

$$\frac{(-1)}{x-1} = \frac{(-2)}{x+1} = \frac{(-$$

$$y = \frac{1}{x-1} + \sqrt{2+x}$$

$$\chi \in [-2,\infty) - \{1\}$$

$$y = \frac{1}{\sqrt{2x^2 - 5x + 3}}$$

Que.5 JEE Main 2019

$$f(x) = \frac{1}{4 - x^2} + \log_{10}(x^3 - x)$$

$$\frac{C-1}{\chi^{2}+4} + \frac{4-\chi^{2}+0}{\chi(\chi^{2}-1)>0}$$

$$\chi^{2}+4 + \chi(\chi^{2}-1)>0$$

$$\chi(\chi+1)(\chi+1)>0$$

$$\chi(\chi+1)(\chi+1)>0$$

$$\chi(\chi+1)(\chi+1)>0$$

$$\chi(\chi+1)(\chi+1)>0$$

$$\chi(\chi+1)(\chi+1)>0$$

$$\chi(\chi+1)(\chi+1)>0$$

$$\chi(\chi+1)(\chi+1)>0$$

$$\chi(\chi+1)(\chi+1)>0$$

Que.6 JEE Main 2025 (03 Apr Morning)

Ans:(A)

If the domain of the function

$$f(x) = \log_e\left(\frac{2x-3}{5+4x}\right) + \sin^{-1}\left(\frac{4+3x}{2-x}\right)$$
is $[\alpha, \beta)$, then $\alpha^2 + 4\beta$ is equal to:

(A) 4

(B) 3

(C) 7

(B) 5

$$\frac{C-1}{5+4x}$$

$$\frac{2x-3}{5+4x} > 0$$

$$\frac{2x-3}{4x+5}$$

$$\frac{1}{x=-5}$$

$$\frac{1}{x=-5}$$

$$\frac{(-2)}{2-1} - | \leq \frac{4+31}{2-1} | = \frac{$$

Que.7 JEE Main 2025 (29 Jan Shift 2) Ans:(C)If the domain of the function $\log_5(18x - x^2 - 77)$ is (α, β) and the domain of the function $\log_{(x-1)}\left(\frac{2x^2+3x-2}{x^2-3x-4}\right)$ is (γ,δ) , then $\alpha^2+\beta^2+\gamma^2$ is equal to: (A) 195 $f(x) = \log (18x - x^2 - 77)$ $\chi^2 - 18 \chi + 77 < 0$ $(\chi + 2) (2\chi - 1)$ $(\chi -4)(\chi +1)$

If the domain of the function $\sin^{-1}\left(\frac{3x-22}{2x-19}\right) + \log_e\left(\frac{3x^2-8x+5}{x^2-3x-10}\right)$ is $(\alpha,\beta]$, then $3\alpha + 10\beta$ is equal to:

(A) 100

(B) 95

(C) 97

(D) 98

$$\frac{(-1)}{2} - \frac{3x - 22}{2x - 19} \le 1$$

$$-1 \le \frac{3x - 22}{2x - 19} = \frac{3x - 22}{2x - 19} \le 1$$

$$\frac{(-2)}{31^{2}-31+5} = 0$$

$$\frac{31^{2}-31+5}{31-51-31+5} = 0$$

$$\frac{31^{2}-51-31+5}{(11-5)(11+2)} = 0$$

$$\frac{(31-5)(11-1)}{(11-5)(11+2)} = 0$$

$$\frac{C-1}{2} - 1 \le \frac{3x - 2z}{2x - 19} \le 1$$

$$-1 \leq \frac{3n-22}{2n-19}$$

and
$$\frac{3N-22}{21-19} \leq 1$$

$$\frac{3n-22}{2n-19}+1>,0$$

$$\frac{3N-22}{2N-19}-1\leq 0$$

$$\frac{5x-41}{2x-19}>0$$

$$\frac{\chi - 3}{2\chi - 19} \leq 0$$

$$(1 \cap (2 + 1) \cap (2 + 1))$$

 $(1 \cap (2 + 1))$
 $(2 + 1)$
 $(3 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$
 $(4 + 1)$

And: (-1 x6[3,4]

Que.9 JEE Main 2024 (01 Feb Shift 2)

Ans:(C)

If the domain of the function $f(x) = \frac{\sqrt{x^2-25}}{4-x^2} + \log_{10}(x^2+2x-15)$ is $(-\infty, \alpha) \cup [\beta, \infty)$, then $\alpha^2 + \beta^3$ is equal to:

(A) 140

(B) 175

(C) 150

(D) 125

 $\chi^2 \sim 25 > 0 \rightarrow (\chi - 1) (\chi + 1) > 0 \rightarrow \chi \leftarrow (-\infty - 1) \cup (2) \sim$

$$2^{2} + \beta^{3}$$

 $(-5)^{2} + (5)^{3}$
 $2^{5} + 12^{5}$

$$4-\chi^2 \neq 0 \longrightarrow \chi^2 \neq 4 \implies \chi \neq \pm 2$$

$$+5 - 15 - (X+5)(X-3) > 0$$

$$+5 - 3 - (X+5)(X-3) > 0$$

If the domain of the function $f(x) = \log_e \left(\frac{2x+3}{4x^2+x-3} \right) + \cos^{-1} \left(\frac{2x-1}{x+2} \right)$ is $(\alpha, \beta]$, then the value of $5\beta - 4\alpha$ is equal to:

(A) 10

(B) 12

(C) 11

(D)9

If the domain of the function $\log_e\left(\frac{6x^2+5x+1}{2x-1}\right)+\cos^{-1}\left(\frac{2x^2-3x+4}{3x-5}\right)$ is $(\alpha,\beta)\cup(\gamma,\delta)$, then $18(\alpha^2+\beta^2+\gamma^2+\delta^2)$ is equal to:

$$\frac{(-1)}{2N-1} = \frac{6N^2 + 5N + 1}{2N-1} > 0 \qquad \frac{(-2)}{3N-5} = \frac{2N^2 - 3N + 4}{3N-5} < 1$$

If the domain of the function

$$f(x) = \log_e(4x^2 + 11x + 6) + \sin^{-1}(4x + 3) + \cos^{-1}\left(\frac{10x + 6}{3}\right)$$

is $(\alpha, \beta]$, then $36|\alpha + \beta|$ is:

(A) 72

(B) 54

(C) 45

(D) 63