A Premier Institute for Pre-Medical & Pre Engineering

"Transforming Your DREAMS Into Reality...!"

NEET/JEE

Topic: Quadratic Equation

Sub: Mathematics DPP: 01 Prof. Chetan Sir

 ${\bf 1.}\,$ Find the roots of following equations :

(a)
$$x^2 + 3x + 2 = 0$$

(b)
$$x^2 - 8x + 16 = 0$$

(c)
$$x^2 - 2x - 1 = 0$$

2. Find the roots of the equation $a(x^2 + 1) - (a^2 + 1)x = 0$, where $a \neq 0$.

3. Solve :
$$\frac{6-x}{x^2-4}=2+\frac{x}{x+2}$$

4. Solve for x:
$$\frac{x+3}{x-2} - \frac{1-x}{x} = \frac{17}{4}$$

- **5.** If the roots of $4x^2 + 5k = (5k + 1)x$ differ by unity, then find the values of k.
- **6.** For what values of a is the sum of the roots of the equation $x^2 + (2 a a^2)x a^2 = 0$ equal to zero?
- 7. For what values of a is the ratio of the roots of the equation $ax^2 (a+3)x + 3 = 0$ equal to 1.5?
- 8. The roots x_1 and x_2 of the equation $x^2 + px + 12 = 0$ are such that $x_2 x_1 = 1$. Find p.
- **9.** Find k in the equation $5x^2 kx + 1 = 0$ such that the difference between the roots of the equation is unity.
- 10. Find p in the equation $x^2 4x + p = 0$ if it is know that the sum of the squares of its roots is equal to 16.
- 11. For what values of a is the difference between the roots of the equation $2x^2 (a+1)x + (a-1) = 0$ equal to their product?
- 12. Express $x_1^3 + x_2^3$ in terms of the coefficients of the equation $x^2 + px + q = 0$, where x_1 and x_2 are the roots of the equation.
- 13. Assume that x_1 and x_2 are roots of the equation $3x^2 ax + 2a 1 = 0$. Calculate $x_1^3 + x_2^3$.
- 14. Without solving the equation $3x^2 5x 2 = 0$, find the sum of the cubes of its roots.
- **15.** Solve the equation $(x^2 + x)^2 8(x^2 + x) + 12 = 0$.
- **16.** Solve the equation $4^x 3 \cdot 2^{x+3} + 128 = 0$.
- **17.** Solve for x: $\left(\frac{x}{x+1}\right)^2 5\left(\frac{x}{x+1}\right) + 6 = 0.$
- **18.** Solve for x: $x 5\sqrt{x} + 4 = 0$.

- 19. If one root of the equation $5x^2 + 13x + k = 0$ is the reciprocal of the other, find the value of k.
- **20.** If the sum of the roots of the equation $kx^2 + 2x + 3k = 0$ is equal to their product, find the value of k.
- **21.** If α and β are the roots of $x^2 5x + 3 = 0$, find the value of $\alpha^2 \beta + \alpha \beta^2$.
- **22.** If α and β are the roots of the equation $x^2 5x + 2 = 0$, find the value of the following expressions:
 - (a) $\alpha^2 + \beta^2$
 - (b) $\alpha^3 + \beta^3$
 - (c) $\frac{1}{\alpha} + \frac{1}{\beta}$
 - (d) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$
- **23.** If α and β are the roots of the equation $x^2 2\sqrt{3}x + 2 = 0$, find the value of $\alpha^4 + \beta^4$.
- **24.** If α and β are the roots of the equation $2x^2 3x 1 = 0$, find the value of $\alpha^6 + \beta^6$.
- **25.** Find the value(s) of k for which one root of the equation $8x^2 30x + k = 0$ is the square of the other.
- **26.** Find the value(s) of m for which one root of the equation $x^2 + (5 m)x + 2 = 0$ is half of the other.

Answer Key (DPP - 1)

2

- **1** (a) -1, -2; (b) 4; (c) $1 \pm \sqrt{2}$
- **2** $a, \frac{1}{a}$

3 $\frac{7}{3}$

4 x = 4, -2/9

5 $3, -\frac{1}{5}$

6 $a_1 = -2, a_2 = 1$

- 7 $a_1 = 2, a_2 = 9/2$
- 8 $p = \pm 7$

- 9 $k = \pm 3\sqrt{5}$
- **10** p = 0

- **11** a = 2
- **12** $3pq p^3$

- 13 $\frac{a(a^2-18a+9)}{27}$
- 14 $\frac{215}{27}$

- **15** $x \in \{-3, -2, 1, 2\}$
- **16** x = 3, 4

- 17 x = -2, -3/2
- **18** x = 1, 16

- **19** k = 5
- **20** k = -2/3

21 15

- **22** (a) 21; (b) 95; (c) 5/2; (d) 21/2
- **23** 56
- **24** $\frac{2041}{64}$

- **25** k = 27 or k = -125
- **26** m = 2 or m = 8
- 27

28